
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022 29

LOOPLock 2.0: An Enhanced Cyclic
Logic Locking Approach

Xiang-Min Yang, Pei-Pei Chen , Hsiao-Yu Chiang , Chia-Chun Lin ,
Yung-Chih Chen , Member, IEEE, and Chun-Yao Wang, Member, IEEE

Abstract—LOOPLock is the state-of-the-art cyclic logic lock-
ing method in hardware security. LOOPLock is able to invalidate
SAT Attack, Removal Attack, and CycSAT simultaneously by
introducing two types of cycle pairs in a circuit. In this work, we
analyze LOOPLock’s locking mechanism and propose an attack-
ing approach based on locking structure analysis. Furthermore,
to defend the new attack, we propose LOOPLock 2.0, which
strengthens the original cyclic logic locking method—LOOPLock.
Experimental results show the efficiency and effectiveness of the
proposed attacking approach to LOOPLock and the high defense
capability of LOOPLock 2.0.

Index Terms—Cyclic logic locking, CycSAT, hardware security,
logic decryption, LOOPLock, SAT attack.

I. INTRODUCTION

THE GLOBALIZATION of IC design and manufactur-
ing flow brings many benefits to the companies in

the semiconductor supply chain. However, if there exists an
untrusted agent in the supply chain, the companies would face
some threats, such as IP/IC piracy, overproduction, or other
unauthorized usages. To protect designs from these threats,
many various hardware security techniques were proposed
recently [1], [2], [6], [7], [9]–[17], [19], [21], [22], [24], [25],
[27], [29], [33]. Logic locking [17] is one of the effective pro-
tection methods among those hardware security techniques.
The main idea of logic locking is to insert some extra key
gates with key inputs. In this way, for those unauthorized
users, unknowing the correct key vector means that they cannot
activate the IC correctly.

However, these traditional logic locking methods are on the
back foot while facing the SAT Attack [26]. It aims to find the
distinguishing input patterns (DIPs) by comparing the outputs
between the original circuit and the locked one. Then it uses
these DIPs to rule out incorrect key vectors.

Manuscript received August 20, 2020; revised November 24, 2020; accepted
January 10, 2021. Date of publication January 25, 2021; date of current version
December 23, 2021. This work was supported in part by the Ministry of
Science and Technology of Taiwan under Grant MOST 108-2218-E-007-061,
Grant MOST 109-2221-E-007-082-MY2, Grant MOST 109-2221-E-155-047-
MY2, and Grant MOST 109-2224-E-007-005. This article was recommended
by Associate Editor S. Ghosh. (Corresponding author: Chia-Chun Lin.)

Xiang-Min Yang, Pei-Pei Chen, Hsiao-Yu Chiang, Chia-Chun Lin,
and Chun-Yao Wang are with the Department of Computer Science,
National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail:
yhm19930125@gmail.com; ling8835@gmail.com; johnny19941007@
gmail.com; chiachunlin@gapp.nthu.edu.tw; wcyao@cs.nthu.edu.tw).

Yung-Chih Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
ycchen.cse@saturn.yzu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2021.3053912

After the SAT Attack, some SAT-resistant methods were
proposed [6], [8], [13]–[16], [20], [21], [27]–[30]. One method
to defending SAT Attack is the cyclic logic locking [21]. The
cyclic logic locking strategically creates cycles in a combina-
tional circuit. As a result, the SAT Attack will be trapped into
an infinite loop or obtain an incorrect key vector while attack-
ing. Although the cyclic logic locking shows its effectiveness
against SAT Attack, it was still cracked by CycSAT [23], [34].
CycSAT can be viewed as an SAT Attack with a new pre-
analysis step, which is to search the noncyclic (NC) condition
from the locked cyclic circuit to guarantee the succeeding SAT
Attack will work well.

Despite the CycSAT introduces an elegant and effective
algorithm to decrypt a locked cyclic circuit, it still has
shortcomings. SRClock [15], [16] was proposed to defend
the CycSAT by creating Super Cycles, aiming to drag out
CycSAT’s performance. On the other hand, since CycSAT
assumes that there will be no noncombinational cycle when the
correct key vector is fed, it will prune all the noncombinational
cycles when the NC condition has been extracted. Although
this assumption sounds reasonable, it is not completely com-
prehensive. Focusing on this shortcoming, Rezaei et al. [14]
proposed a method to invalidate CycSAT. The method creates
cycles that behave noncombinationally in unreachable states.
These noncombinational cycles will not be broken under any
correct key vector. When the CycSAT launches attack on this
locking method, it will prune all the noncombinational cycles
first. Pruning all the noncombinational cycles is equivalent to
pruning the correct key vectors.

With the similar concept of [14], Chiang et al. [6] proposed
LOOPLock to protect designs from SAT Attack, CycSAT,
and Removal Attack [31], [32]. Two types of cyclic struc-
tures are created in LOOPLock, called Type-I cycle pair and
Type-II cycle pair. The Type-I cycle pair is to invalidate the
SAT Attack, while the Type-II cycle pair is for defending
CycSAT.

In this article, we discuss the security concerns of
LOOPLock by structural analysis and propose an attacking
approach to unlock LOOPLock. Furthermore, we propose
LOOPLock 2.0 to elevate the security level.

II. PRELIMINARIES

A. Background

An input-controlling value (ICV) of a gate g is the value that
can determine the output value of g. An input-noncontrolling

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2474-7902
https://orcid.org/0000-0001-7194-5878
https://orcid.org/0000-0002-0136-9825
https://orcid.org/0000-0002-3934-800X

30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

value (INCV) is the inverse of ICV. A gate d is called a dom-
inator of a gate g when every path from g to any primary
output (PO) must pass through d. Given a gate g and the set
G of dominators of g, the side inputs of G are the fanins of
G, but are not in the fanout cone of g. The stuck-at fault is
a fault model used to describe manufacturing defects in the
circuit. A stuck-at fault means that the value on the wire will
be fixed to either 1 (stuck-at 1) or 0 (stuck-at 0) due to manu-
facturing defects. A stuck-at fault test is a process to generate
test patterns capable of distinguishing a faulty circuit from
fault-free one. The mandatory assignments (MAs) are unique
values assigned to wires to test a fault on a wire w. The MAs
are assignments for activating or propagating the fault effect.
If the MAs of a fault are inconsistent, no test pattern exists
for detecting the fault.

B. Node Merging

Node Merging (NM) [4], [5] is a logic optimization tech-
nique considering observability don’t cares. Let nt denote a
target node, and ns denote a substitute node. Merging nt and
ns is equivalent to replacing nt with ns. After merging, nt is
removed from the circuit and nt’s original fanout nodes will be
driven by ns instead. Generally, merging two nodes in a circuit
will change the circuit’s functionality, and it can be modeled
as a misplaced-wire error as stated in [4] and [5]. However, if
the effect of this misplaced-wire error cannot be observed at
any PO of the circuit, merging these two nodes will not affect
the functionality of the circuit. The sufficient condition of the
node mergers with respect to a target node nt was proposed
in [4] and [5].

Condition 1 [4], [5]: Let f denote an error of replacing nt

with ns. If ns = 1 or D, and nt = D are MAs for the stuck-at
0 fault test on nt, and ns = 0 or D, and nt = D are MAs for
the stuck-at 1 fault test on nt, f is undetectable.

D (D) means that the value is 1/0 (0/1), where 1 (0) is
the fault-free value, and 0 (1) is the faulty value. These two
symbols in Condition 1 are used in the ATPG algorithms [18].

C. NM-Based Cycle Generation

Chen and Wang [4], [5] did not choose the ns that is located
at the nt’s fanout cone to replace nt. This is because that it
may form a noncombinational cycle if we choose such kind
of ns. Chen et al. [3] proposed Theorem 1 to describe the
requirement about being combinational cycles after merging.

Theorem 1 [3]: Let nt denote a target node and ns denote a
substitute node in the fanout cone of nt. Replacing nt with ns

forms a set of cycles C. If the value changes on nt are never
propagated to ns, which means that all the side inputs of C
are not INCVs simultaneously, C is combinational.

According to Theorem 1, distinguishing between a non-
combinational cycle and a combinational cycle is equivalent
to checking if the value changes on nt are propagated to ns

or not. If there is no input pattern that can activate the fault
effect on nt and propagates the fault effect to ns, the formed
cycle is a combinational cycle, and the ns is a cyclic substitute
node (CSN). Chen et al. [3] proposed Condition 2 based on
Condition 1 to identify candidate CSNs efficiently.

Fig. 1. (a) Original circuit before encryption. (b) Type-I cycle pair, the red
cycle is incorrect while the green one is correct.

Condition 2 [3]: Let ns denote a substitute node in the
fanout cone of the target node nt. Replacing nt with ns forms
a set of cycles C. If ns = 1 and nt = D are MAs for the
stuck-at 0 fault test on nt, and ns = 0 and nt = D are MAs
for the stuck-at 1 fault test on nt, ns is a candidate CSN.

D. LOOPLock

LOOPLock is a cyclic logic locking method that can defend
circuit from the SAT Attack, CycSAT, and Removal Attack.
LOOPLock contains two locking structures called the Type-I
and Type-II cycle pairs. For each cycle pair, there are two
cycles, where one is a noncombinational cycle and the other is
a combinational cycle. In Section II-C, we have discussed how
to create functionally correct combinational cycles by using
the NM method [3]–[5]. Here, we further explain how to create
noncombinational cycles in a circuit.

According to Theorem 1, the sufficient condition ensuring
the formed cycle C is combinational is that the value changes
on nt are never propagated to ns. That is, there exists a blocking
node nb that blocks the effect of value changes from nt on the
path between nt and ns. Based on this observation, we can
choose a node between nt and nb to replace nt for creating a
noncombinational cycle. On the contrary, if we choose a node
that is in the fanout cone of nb and use this node to replace
nt, the created cycle will be combinational.

The original circuit and the resultant circuit with the Type-I
cycle pair are shown as Fig. 1(a) and (b), respectively. In the
original circuit, the node n7 can be identified as an ns for n1 by
using the methods in [3]–[5]. Thus, we can use n7 to replace
n1 to construct a functionally correct combinational cycle L2.
Next, by observing the fault effect propagation, we can identify
n4 as the nb. We choose n2 to create the noncombinational
cycle L1 that affects y1. These two cycles are connected to a
MUX M1, and the key input K1 is used as a selection line for
M1. When the correct key vector is fed (K1 = 1), the green
cycle L2 will be chosen, and the circuit’s functionality will be
correct.

Next, we introduce the Type-II cycle pair using the example
in Fig. 2. In the Type-II cycle pair, it has a noncombinational
cycle L4 where the noncombinational effect is unobservable
at any PO. The other cycle is a combinational cycle L3,
which has no effect on the circuit’s functionality. Similar to

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOOPLock 2.0: ENHANCED CYCLIC LOGIC LOCKING APPROACH 31

Fig. 2. (a) Original circuit before encryption. (b) Type-II cycle pair, the red
cycle is incorrect while the green one is correct.

the Type-I cycle pair, these two cycles are connected to a
MUX M3, and the key input K2 is used to control the MUX.
In Fig. 2(a), n9 is the nt, and n12 is the nb. Thus, n10 can
be used to form a noncombinational cycle L4. Since there is
no PO located at a node prior to n12, the noncombinational
effect of L4 will not change the circuit’s functionality. Then
LOOPLock will select a node that is behind n12 to construct
a combinational cycle L3. When the correct key vector is fed
(K2 = 1), the green cycle L4 will be chosen, and K2 = 1
also implies that n15 will be chosen for MUX M4, which can
restore the original functionality.

III. OUR UNLOCKING APPROACH

Two types of cycle pairs are created in the LOOPLock. To
activate the locked circuit, we have to choose the correct cycle
for each type of cycle pair. If we can distinguish between these
two types of cycle pairs, we can choose the correct cycles. For
ease of discussion, we call the MUX that is located in the left
side of a cycle pair as a pre-MUX, while the one located in
the right side of a cycle pair as a post-MUX.

A. Shortcomings of LOOPLock

To distinguish between the Type-I and Type-II cycle pairs,
our strategy is to search the structural difference between these
two cycle pairs. For a Type-II cycle pair, to avoid affecting the
circuit’s functionality, there is no PO located between nt and
nb. On the contrary, there exists at least one PO located in
between nt and nb to invalidate the SAT Attack in a Type-I
cycle pair.

Considering this shortcoming, we can distinguish between
these two types of cycle pairs by checking whether there is any
PO located in between nt and nb. To achieve this objective,
we need to recognize the positions of nt and nb in the circuit.
First, although nt has been removed, nt’s position for a cycle
pair is still obvious. For example, in Fig. 1(a), n1 is nt and it
connects to n2. After locking, n1 is removed and replaced by
the pre-MUX M1. Based on this observation, we can ensure
that the nt’s position in the original circuit is exactly the pre-
MUX’s position in the locked circuit. Next, we present how
to identify the blocking node nb in Section III-B.

Fig. 3. Pseudocode of the proposed unlocking approach.

B. Blocking Node Identification

Before identifying the blocking node nb in each cycle pair,
we first conduct a removal process on each Type-I and Type-II
cycle pair in the locked circuit. The removal process will break
the cycles and eliminate MUXes in each cycle pair. In this way,
we can obtain an acyclic circuit. After removing these MUXes
in a cycle pair, we find that the wire at the pre-MUX’s output
becomes floating. Thus, we assign a virtual primary input vpi
in the circuit. Then, we propagate the fault effects from this
vpi for identifying the position of nb.

We first assign a fault effect (either D or D) on vpi, and
propagate the fault effect by assigning proper side input values.
Also, we propagate the fault effect D in the same manner.
Then, we can know the location where the fault effects D and
D are blocked, and the node is the nb for the cycle pair.

C. Flow

The pseudocode of the proposed unlocking approach is
shown in Fig. 3. Given a locked circuit Ce, for each key input
KI in Ce, we search the corresponding cycle pair CP. For
each CP, we find out its pre-MUX and post-MUX. Then, we
remove these MUXes and insert a virtual primary input vpi.
Afterward, we propagate the fault effects D and D from the
vpi to identify the position of nb. Next, we check if there exists
any PO between vpi and nb. If so, the CP is a Type-I cycle
pair; otherwise, the CP is a Type-II cycle pair. For the Type-I
cycle pair, we choose the combinational cycle, and the key
value Kc will be collected in the Kvector. For a Type-II cycle
pair, we choose the noncombinational cycle with the key value
Knc. Finally, the Kvector will be returned after each CP has been
analyzed.

IV. LOOPLOCK 2.0

A. Enhanced Locking Structure in LOOPLock 2.0

From the discussion in Section III, the difference between
the Type-I and Type-II cycle pairs is whether there exists any

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

PO located between nt and nb. Thus, to defend the unlocking
approach, we first create a new structure having at least one
PO located between nt and nb in the Type-II cycle pair. In
this way, the structures of two types of cycle pairs would be
similar.

Since our goal is to create a path connecting from one node
between nt and nb to a PO in the Type-II cycle pair, we ran-
domly select a PO yn and its fanin nodes na from the original
circuit as a subcircuit. Now, we can create a path connecting
one node nx between the pre-MUX and the blocking node nb

to the PO yn, such that yn’s functionality could be intact. We
choose nx and na to connect to an additional MUX Ma with
the selection line Ka. When the correct key value of Ka is
assigned, na will be selected to connect to yn. For attackers,
however, they cannot directly judge the type of this cycle pair
using the proposed unlocking approach. This is because there
does exist a path from nx to the PO yn.

On the other hand, the structure of the original Type-I cycle
pair also has to be modified. There is at least one node nx

connecting to the PO yn in the original Type-I cycle pair.
Similarly, we randomly select an additional node na from the
original circuit, and insert a MUX Ma between nx and a PO
yn with the selection line Ka. The other input of MUX Ma is
the node na. When the correct key value of Ka is assigned,
the functionalities of the original and enhanced Type-I cycle
pairs are identical.

With the enhanced structures, the Type-I and Type-II cycle
pairs look similar. In fact, they are identical from the view-
point that there exists a PO located between nt and nb.
Thus, the unlocking approach cannot attack LOOPLock 2.0
by distinguishing the Type-I and Type-II cycle pairs.

B. Subcircuit Duplication

In Section IV-A, we introduce the LOOPLock 2.0, which
strengthens the security level of the LOOPLock. However,
another critical concern in LOOPLock is that the structure of
the Type-II cycle pair requires many constraints, which are not
easy to meet in practice. In fact, the target node in the Type-II
cycle pair has to be a redundant node to the original circuit.
We explain this phenomenon from two aspects. First, from the
discussion in Section II-D, a blocking node nb is the node that
can block the fault effect. The side inputs of the nodes between
nt and nb cannot be INCVs simultaneously under any input
vector. That is, some side inputs of the nodes between nt and
nb have to be complemented, e.g., xi and xi. Second, there is
no path connecting to a PO between nt and nb in the Type-II
cycle pair. Thus, the nodes between nt and nb have to be the
dominators of nt. However, from the first aspect, we can find
that the side inputs of the dominators cannot be INCVs simul-
taneously. Therefore, if we conduct the stuck-at 0 and stuck-at
1 fault tests and derive the MAs for a target node nt, which
are used to construct a Type-II cycle pair, we will find that
the nt is a redundant node due to inconsistent MAs.

Generally, redundant nodes are not popular in the circuits.
Thus, in this section, we further introduce a subcircuit dupli-
cation approach to create redundancy. With this approach, we
can increase the number of Type-II cycle pairs in a circuit.

TABLE I
COMPARISON OF THE PROPOSED UNLOCKING APPROACH AGAINST THE

CYCSAT AND SAT ATTACK ON THE LOCKED CIRCUITS BY LOOPLOCK

AND THE SUBCIRCUIT DUPLICATION APPROACH

Intuitively, if there exists any node connecting to PO
between nt and nb, this subcircuit cannot be used to create the
original Type-II cycle pair. Thus, our approach will remove
all the paths connecting to POs between nt and nb. Then, we
can use the remaining subcircuit to create the original Type-II
cycle pair. Next, to keep the circuit’s functionality intact, we
duplicate the nodes between nt and nb and use these nodes to
drive the removed paths connecting to POs. Note that these
duplicated nodes should be connected to the same inputs as
the original circuit. In this way, we can create more Type-II
cycle pairs without changing the circuit’s functionality.

Based on the discussion, we find that there are three MUXes
needed to be inserted for each cycle pair. Thus, the area over-
head with LOOPLock 2.0 may be high on small circuits while
it is still very low for most circuits.

V. EXPERIMENTAL RESULTS

The proposed unlocking approach and LOOPLock 2.0 were
implemented in C language within ABC [36] environment in
a 3.0-GHz Linux platform (CentOS 4.6). The benchmarks
are from the IWLS 2005 suite [35]. We used LOOPLock
to generate these locked benchmarks. Every benchmark was
represented in AIG in blif format.

First, we conducted experiments for demonstrating the
effectiveness of the proposed unlocking approach. We com-
pared our results with the well-known methods—the CycSAT
and SAT Attack. We reimplemented the program in [6], which
are about using the LOOPLock to defend CycSAT and SAT
Attack, and obtained the results.

The experimental results are shown in Table I. In this
experiment, we generated only one Type-I cycle pair and
one Type-II cycle pair in each circuit. However, some circuits
do not have the required structure for constructing the Type-II
cycle pair. Thus, we conducted the subcircuit duplication
approach to increase the Type-II cycle pairs. The column
“key” represents whether the key vector is correct (yes) or
not (no). The “Inf.loop” means that the unlocking method was
trapped into an infinite loop such that no key vector can be
returned. The experimental results show that our unlocking
approach can efficiently obtain the correct key vector. This is
because the computation complexity of our approach comes

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOOPLock 2.0: ENHANCED CYCLIC LOGIC LOCKING APPROACH 33

TABLE II
COMPARISON OF THE MAXIMUM NUMBER OF TYPE-II CYCLE PAIRS

BETWEEN LOOPLOCK AND LOOPLOCK 2.0

TABLE III
RESULT OF THE PROPOSED UNLOCKING APPROACH FOR LOOPLOCK ON

THE LOCKED CIRCUITS BY LOOPLOCK 2.0

from propagating the fault effects on two designated vpis,
which is not computation-intensive. For CycSAT, the results
are all Inf.loop, this is because CycSAT cannot effectively
find the condition to break the cycle. This situation causes the
succeeding SAT Attack to find no DIPs due to the noncombi-
national cycle. Similar to CycSAT, BeSAT [23] still constructs
the same NC condition as CycSAT. Thus, it is quite challeng-
ing for BeSAT to unlock the circuit locked by LOOPLock
2.0. For the SAT Attack, the results are either UNSAT or
Inf.loop due to the existence of the noncombinational cycle
in the Type-I cycle pair.

For the second experiment, we show the number of Type-II
cycle pairs that we can construct for each benchmark when
applying the subcircuit duplication approach. Table II shows
the results in identifying the Type-II cycle pairs as compared
with LOOPLock. The columns |PI|/|PO| and |Node| show
the information of each original benchmark. The columns
|LOOPLock| and |LOOPLock 2.0| show the numbers of
identified Type-II cycle pairs in LOOPLock and our approach,
respectively. The experimental results show that the average
number of Type-II cycle pairs in our approach is much more
than that in LOOPLock.1

For the last experiment, we show the results of using the
proposed unlocking approach for LOOPLock to attack the

1The original data about the number of the Type-II cycle pairs shown in [6]
is incorrect due to a bug. In this article, we correct the data.

locked circuits by LOOPLock 2.0. Table III shows that the
returned key vectors are incorrect when applying the proposed
unlocking approach to the locked circuits. This is because both
the Type-I and Type-II cycle pairs have at least one PO located
between nt and nb in LOOPLock 2.0. In the proposed unlock-
ing approach for LOOPLock, we will identify a cycle pair as
a Type-I cycle pair when there exists a path connecting to the
PO from a node in between nt and nb. Thus, the returned key
vectors were incorrect under the proposed unlocking approach.
The result indicates that the security level of circuit is elevated
by LOOPLock 2.0.

VI. CONCLUSION

In this article, we discussed the weakness of LOOPLock
and proposed an unlocking approach to attack LOOPLock.
The experimental results show that the proposed approach is
able to unlock the locked circuits effectively and efficiently.
Furthermore, we proposed LOOPLock 2.0 having enhanced
structures to strengthen the security of circuit. Finally, we
proposed a subcircuit duplication approach that enriches the
construction of Type-II cycle pairs in a benchmark.

REFERENCES

[1] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT attack:
Next generation attack on obfuscated circuits with capabilities and
performance beyond the SAT attacks,” IACR Trans. Cryptogr. Hardw.
Embedded Syst., vol. 2019, no. 1, pp. 97–122, 2019.

[2] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan
attacks: Threat analysis and countermeasures,” in Proc. IEEE, vol. 102,
no. 8, pp. 1229–1247, Aug. 2014.

[3] J.-H. Chen, Y.-C. Chen, W.-C. Weng, C.-Y. Huang, and C.-Y. Wang,
“Synthesis and verification of cyclic combinational circuits,” in Proc.
SOCC, 2015, pp. 257–262.

[4] Y.-C. Chen and C.-Y. Wang, “Fast detection of node mergers using logic
implications,” in ICCAD Dig. Tech. Papers, 2009, pp. 785–788.

[5] Y.-C. Chen and C.-Y. Wang, “Fast node merging with don’t cares using
logic implications,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 29, no. 11, pp. 1827–1832, Nov. 2010.

[6] H.-Y. Chiang, Y.-C. Chen, D.-X. Ji, X.-M. Yang, C.-C. Lin, and
C.-Y. Wang, “LOOPLock: Logic optimization based cyclic logic lock-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2178–2191, Oct. 2020.

[7] S. Dupuis, P.-S. Ba, G. D. Natale, M.-L. Flottes, and B. Rouzeyre,
“A novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans,” in Proc. IOLTS, 2014, pp. 49–54.

[8] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-Lock:
Hard distributions of SAT instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proc. DAC, 2019, pp. 1–6.

[9] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in Proc. DATE, 2019, pp. 540–545.

[10] A. Marcelli, M. Restifo, E. Sanchez, and G. Squillero, “An evolutionary
approach to hardware encryption and trojan-horse mitigation,” in Proc.
DATE, 2017, pp. 1593–1598.

[11] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 410–424, Feb. 2015.

[12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic encryption:
A fault analysis perspective,” in Proc. DATE, 2012, pp. 953–958.

[13] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,” in Proc. DATE, 2018, pp. 85–90.

[14] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, “CycSAT-unresolvable
cyclic logic encryption using unreachable states,” in Proc. ASPDAC,
2019, pp. 358–363.

[15] S. Roshanisefat, H. M. Kamali, and A. Sasan, “SRClock: SAT-resistant
cyclic logic locking for protecting the hardware,” in Proc. GLSVLSI,
2018, pp. 153–158.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

34 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

[16] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, “SAT-hard
cyclic logic obfuscation for protecting the IP in the manufacturing supply
chain,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 4,
pp. 954–967, Apr. 2020.

[17] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, Oct. 2010.

[18] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed algo-
rithms to compute tests to detect and distinguish between failures in
logic circuits, ” IEEE Trans. Electron. Comput., vol. EC-16, no. 5,
pp. 567–580, Oct. 1967.

[19] M. S. Samimi, E. Aerabi, Z. Kazemi, M. Fazeli, and A. Patooghy,
“Hardware enlightening: No where to hide your hardware trojans!” in
Proc. IOLTS, 2016, pp. 251–256.

[20] B. Shakya, X. Xu, X. Xu, and D. Forte, “CAS-lock: A security-
corruptibility trade-off resilient logic locking scheme,” IACR Trans.
Cryptogr. Hardw. Embedded Syst., vol. 2020, no. 1, pp. 175–202,
2019.

[21] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating SAT-unresolvable circuits,” in Proc. GLSVLSI,
2017, pp. 173–178.

[22] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. HOST, 2017,
pp. 95–100.

[23] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based attack on cyclic logic encryption,” in Proc.
ASPDAC, 2019, pp. 657–662.

[24] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” in Proc. ASPDAC, 2018,
pp. 271–276.

[25] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” in Proc. GLSVLSI, 2018, pp. 179–184.

[26] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. HOST, 2015, pp. 137–143.

[27] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in
Proc. Int. Conf. Cryptogr. Hardw. Embedded Syst., 2016, pp. 127–146.

[28] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 2, pp. 199–207, Feb. 2019.

[29] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARlock:
SAT attack resistant logic locking,” in Proc. HOST, 2016, pp. 236–241.

[30] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. CCS, 2017, pp. 1601–1618.

[31] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
analysis of anti-SAT,” in Proc. ASPDAC, 2016, pp. 342–347.

[32] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE Trans.
Emerg. Topics Comput., vol. 8, no. 2, pp. 517–532, Apr.–Jun. 2020.

[33] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the
security of logic locking,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 9, pp. 1411–1424, Sep. 2016.

[34] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic
logic encryptions,” in Proc. ICCAD, 2017, pp. 49–56.

[35] (Jun. 2005). IWLS 2005 Benchmarks. [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

[36] Berkeley Logic Synthesis and Verificaiton Group. ABC: A System
for Sequential Synthesis and Verification. Accessed: Nov. 24, 2020.
[Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 24,2021 at 06:54:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

